CUED Publications database

Analytical formulation of modal frequency split in the elliptical mode of SCS micromechanical disk resonators

Wei, X and Seshia, AA (2014) Analytical formulation of modal frequency split in the elliptical mode of SCS micromechanical disk resonators. Journal of Micromechanics and Microengineering, 24. ISSN 0960-1317

Full text not available from this repository.

Abstract

This paper presents an analytical formulation of frequency splitting observed in the elliptical modes of single crystal silicon (SCS) micromechanical disk resonators. Taking the anisotropic elasticity of SCS into account, new formulae for computing modal mass and modal stiffness are first derived for accurate prediction of the modal frequency. The derived results are in good agreement with finite element simulation, showing a factor of 10 improvement in the prediction accuracy as compared to using the formula for the isotropic case. In addition, the analysis successfully explains the effect of anisotropy on the modal frequency splitting of primary elliptical modes, for which the maximum modal displacement is aligned with the directions of maximum (1 1 0) and minimum (1 0 0) elasticity respectively on a (1 0 0) SCS wafer. The measured frequency splitting of other degenerate modes is due to the manufacturing imperfections. © 2014 IOP Publishing Ltd.

Item Type: Article
Subjects: UNSPECIFIED
Divisions: Div C > Applied Mechanics
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:17
Last Modified: 10 Aug 2017 01:37
DOI: