CUED Publications database

Unsteady interaction between annulus and turbine rim seal flows

Chilla, M and Hodson, H and Newman, D (2013) Unsteady interaction between annulus and turbine rim seal flows. Journal of Turbomachinery, 135. ISSN 0889-504X

Full text not available from this repository.


In core gas turbines relatively cold air is purged through the hub gap between the stator and rotor in order to seal the disk space against flow ingestion from the main annulus. Although the sealing mass flow rate is commonly very small compared to the main annulus mass flow rate, it can have significant effects on the development of the passage endwall flows and on the overall loss generation. In this paper, the interaction between the annulus and rim sealing flows is investigated using numerical simulations of a generic high-pressure turbine. At first, the numerical approach is validated by comparing the results of calculations to measurement data at the design flow conditions. Following that, results from steady and unsteady calculations are used to describe in detail the aerodynamics in overlap-type rim seals and their effects on the blade passage flow. It is found that the flow interaction at the rim seal interface is strongly influenced by the velocity deficit of the rim sealing flow relative to the annulus flow as well as by the circumferentially nonuniform pressure field imposed by the rotor blades. At typical sealing flow conditions, the flow interaction at the rim seal interface is found to be naturally unsteady, with periodical vortex shedding into the rotor passage. The rim seal geometry, in particular close to the annulus interface, is found to have an effect on the frequency of the shedding process. Finally, it is shown that the rim seal flow interaction can be stabilized by increasing either the sealing mass flow rate or the sealing tangential velocity. © 2013 by ASME.

Item Type: Article
Divisions: Div A > Turbomachinery
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:06
Last Modified: 19 Jul 2018 06:59