CUED Publications database

Development of high-throughput glass inkjet devices for pharmaceutical applications.

Ehtezazi, T and Dempster, NM and Martin, GD and Hoath, SD and Hutchings, IM (2014) Development of high-throughput glass inkjet devices for pharmaceutical applications. J Pharm Sci, 103. pp. 3733-3742.

Full text not available from this repository.

Abstract

The application of the inkjet method to pharmaceutical products is promising. To make this realistic, not only does the throughput of this method need to be increased, but also the components should be inert to pharmaceutical preparations. We present designs of glass-based inkjet devices that are capable of producing droplets at high rates. To achieve this, inkjet devices from glass capillary tubes were manufactured with orifice diameters of 5, 10 and 20 μm and were actuated with diaphragm piezoelectric disks. Also, a pressure capsule was formed by creating a manifold at a distance from the orifice tip. Placing the piezoelectric disk at 0.5 mm distance from the tip allowed the formation of a jet at 3.2 MHz in certain designs, but for a short period of time because of overheating. The length of the pressure capsule, its inlet diameter, and the nozzle tip geometry were crucial to lower the required power. Actuating an inkjet device with 10 μm orifice diameter comfortably at 900 kHz and drying the droplets from 1% salbutamol sulphate solution allowed the formation of particles with diameters of 1.76 ± 0.15 μm and the geometric standard deviation of 1.08. In conclusion, optimising internal design of glass inkjet devices allowed the production of high-throughput droplet ejectors.

Item Type: Article
Uncontrolled Keywords: crystallography high throughput inkjet devices pharmaceutical inhalers powder technology pulmonary solid state spray drying uniform particles Albuterol Calorimetry, Differential Scanning Chemistry, Pharmaceutical Crystallization Crystallography, X-Ray Equipment Design Glass High-Throughput Screening Assays Particle Size Powder Diffraction Pressure Printing Technology, Pharmaceutical Thermogravimetry
Subjects: UNSPECIFIED
Divisions: Div E > Production Processes
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:09
Last Modified: 23 Nov 2017 03:36
DOI: