CUED Publications database

Language independent and unsupervised acoustic models for speech recognition and keyword spotting

Knill, KM and Gales, MJF and Ragni, A and Rath, SP (2014) Language independent and unsupervised acoustic models for speech recognition and keyword spotting. In: Interspeech 2014, 2014-9-14 to 2014-9-18 pp. 16-20..

Full text not available from this repository.


Copyright © 2014 ISCA. Developing high-performance speech processing systems for low-resource languages is very challenging. One approach to address the lack of resources is to make use of data from multiple languages. A popular direction in recent years is to train a multi-language bottleneck DNN. Language dependent and/or multi-language (all training languages) Tandem acoustic models (AM) are then trained. This work considers a particular scenario where the target language is unseen in multi-language training and has limited language model training data, a limited lexicon, and acoustic training data without transcriptions. A zero acoustic resources case is first described where a multilanguage AM is directly applied, as a language independent AM (LIAM), to an unseen language. Secondly, in an unsupervised approach a LIAM is used to obtain hypotheses for the target language acoustic data transcriptions which are then used in training a language dependent AM. 3 languages from the IARPA Babel project are used for assessment: Vietnamese, Haitian Creole and Bengali. Performance of the zero acoustic resources system is found to be poor, with keyword spotting at best 60% of language dependent performance. Unsupervised language dependent training yields performance gains. For one language (Haitian Creole) the Babel target is achieved on the in-vocabulary data.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Divisions: Div F > Machine Intelligence
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:37
Last Modified: 22 May 2018 07:18