CUED Publications database

Comparison of five topologies of cantilever-based MEMS piezoelectric vibration energy harvesters

Jia, Y and Seshia, AA (2014) Comparison of five topologies of cantilever-based MEMS piezoelectric vibration energy harvesters. In: UNSPECIFIED.

Full text not available from this repository.

Abstract

© Published under licence by IOP Publishing Ltd. In the realm of MEMS piezoelectric vibration energy harvesters, cantilever-based designs are by far the most popular. Despite being deceptively simple, the active piezoelectric area near the clamped end is able to accumulate maximum strain-generated-electrical-charge, while the free end is able to accommodate a proof mass without compromising the effective area of the piezoelectric generator since it experiences minimal strain anyway. While other contending designs do exist, this paper investigates five micro-cantilever (MC) topologies, namely: a plain MC, a tapered MC, a lined MC, a holed MC and a coupled MC, in order to assess their relative performance as an energy harvester. Although a classical straight and plain MC offers the largest active piezoelectric area, alternative MC designs can potentially offer higher average mechanical strain distribution for a given mechanical loading. Numerical simulation and experimental comparison of these 5 MCs (0.5 μ AlN on 10 μm Si) with the same practical dimensions of 500 μm and 2000 μm, suggest a cantilever with a coupled subsidiary cantilever yield the best power performance, closely followed by the classical plain topology.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Subjects: UNSPECIFIED
Divisions: Div C > Applied Mechanics
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:09
Last Modified: 15 Aug 2017 01:27
DOI: