CUED Publications database

On particle Gibbs sampling

Chopin, N and Singh, SS (2015) On particle Gibbs sampling. Bernoulli, 21. pp. 1855-1883. ISSN 1350-7265

Full text not available from this repository.


© 2015 ISI/BS. The particle Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm to sample from the full posterior distribution of a state-space model. It does so by executing Gibbs sampling steps on an extended target distribution defined on the space of the auxiliary variables generated by an interacting particle system. This paper makes the following contributions to the theoretical study of this algorithm. Firstly, we present a coupling construction between two particle Gibbs updates from different starting points and we show that the coupling probability may be made arbitrarily close to one by increasing the number of particles. We obtain as a direct corollary that the particle Gibbs kernel is uniformly ergodic. Secondly, we show how the inclusion of an additional Gibbs sampling step that reselects the ancestors of the particle Gibbs' extended target distribution, which is a popular approach in practice to improve mixing, does indeed yield a theoretically more efficient algorithm as measured by the asymptotic variance. Thirdly, we extend particle Gibbs to work with lower variance resampling schemes. A detailed numerical study is provided to demonstrate the efficiency of particle Gibbs and the proposed variants.

Item Type: Article
Divisions: Div F > Signal Processing and Communications
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 18:59
Last Modified: 22 Oct 2019 09:16
DOI: 10.3150/14-BEJ629