CUED Publications database

Synthesis of nanostructures in nanowires using sequential catalyst reactions.

Panciera, F and Chou, Y-C and Reuter, MC and Zakharov, D and Stach, EA and Hofmann, S and Ross, FM (2015) Synthesis of nanostructures in nanowires using sequential catalyst reactions. Nat Mater, 14. pp. 820-825. ISSN 1476-1122

Full text not available from this repository.


Nanowire growth by the vapour-liquid-solid (VLS) process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid-state lighting and single-photon sources to thermoelectric devices. Here, we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyse nanowire growth as a 'mixing bowl', in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystals that are then incorporated into the nanowires by further growth. We demonstrate this concept by epitaxially incorporating metal-silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures.

Item Type: Article
Divisions: Div B > Solid State Electronics and Nanoscale Science
Div B > Electronics, Power & Energy Conversion
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:45
Last Modified: 19 Jul 2018 07:29