CUED Publications database

Facile integration of ordered nanowires in functional devices

Guilera, J and Fàbrega, C and Casals, O and Hernández-Ramírez, F and Wang, S and Mathur, S and Udrea, F and De Luca, A and Ali, SZ and Romano-Rodríguez, A and Prades, JD and Morante, JR (2015) Facile integration of ordered nanowires in functional devices. Sensors and Actuators, B: Chemical, 221. pp. 104-112. ISSN 0925-4005

Full text not available from this repository.


© 2015 Elsevier B.V. All rights reserved. The integration of one-dimensional (1D) nanostructures of non-industry-standard semiconductors in functional devices following bottom-up approaches is still an open challenge that hampers the exploitation of all their potential. Here, we present a simple approach to integrate metal oxide nanowires in electronic devices based on controlled dielectrophoretic positioning together with proof of concept devices that corroborate their functionality. The method is flexible enough to manipulate nanowires of different sizes and compositions exclusively using macroscopic solution-based techniques in conventional electrode designs. Our results show that fully functional devices, which display all the advantages of single-nanowire gas sensors, photodetectors, and even field-effect transistors, are thus obtained right after a direct assembly step without subsequent metallization processing. This paves the way to low cost, high throughput manufacturing of general-purpose electronic devices based on non-conventional and high quality 1D nanostructures driving up many options for high performance and new low energy consumption devices.

Item Type: Article
Divisions: Div B > Electronics, Power & Energy Conversion
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:40
Last Modified: 22 May 2018 07:44