CUED Publications database

Influence of pulmonary factors on pulse oximeter saturation in preterm infants

Jones, JG and Lockwood, GG and Fung, N and Lasenby, J and Ross-Russell, RI and Quine, D and Stenson, BJ (2016) Influence of pulmonary factors on pulse oximeter saturation in preterm infants. Archives of Disease in Childhood: Fetal and Neonatal Edition, 101. F319-F322. ISSN 1359-2998

Full text not available from this repository.


© 2016, BMJ Publishing Group. All rights reserved.Aim: To describe how the stability of oxygen saturation measured by pulse oximetry (SpO2%) varies within and between infants with bronchopulmonary dysplasia (BPD). Methods: Clinically stable infants with BPD had SpO2 measured at different inspired oxygen concentrations (FIO2 expressed as %). A computer model of gas exchange, that is, ventilation/perfusion ratio (VA/Q) and shunt, plotted the curve of SpO2 versus FIO2 best fitting these data. The slope of this curve is the change in SpO2 per % change in FIO2, hence SpO2 stability, calculated at each SpO2 from 85% to 95%. Results: Data from 16 infants with BPD previously described were analysed. The dominant gas exchange impairment was low VA/Q (median 0.35, IQR, 0.16-0.4, normal 0.86). Median shunt was 1% (IQR, 0-10.5; normal <2%). Slope varied markedly between infants, but above 95% SpO2 was always <1.5. In infants with least severe BPD (VA/Q ≈0.4, shunt ≤2%) median slope at 85% SpO2 was 5.1 (IQR, 3.7-5.5). With more severe BPD (VA/Q ≤0.3) slope was flatter throughout the SpO2 range. The highest FIO2 for 90% SpO2 was in infants with the lowest VA/Q values. Conclusions: In infants with BPD, there was large variation in the slope of the curve relating SpO2% to inspired oxygen fraction in the SpO2 range 85%-95%. Slopes were considerably steeper at lower than higher SpO2, especially in infants with least severe BPD, meaning that higher SpO2 target values are intrinsically much more stable. Steep slopes below 90% SpO2 may explain why some infants appear dependent on remarkably low oxygen flows.

Item Type: Article
Uncontrolled Keywords: Fetal Medicine Intensive Care Monitoring Physiology Bronchopulmonary Dysplasia Humans Infant, Newborn Infant, Premature Oximetry Oxygen Consumption Retrospective Studies Severity of Illness Index Statistics as Topic Ventilation-Perfusion Ratio
Divisions: Div F > Signal Processing and Communications
Depositing User: Unnamed user with email
Date Deposited: 17 Jul 2017 19:33
Last Modified: 09 Sep 2021 02:12
DOI: 10.1136/archdischild-2015-308675