CUED Publications database

Thermal conductivity of engineered bamboo composites

Shah, DU and Bock, MCD and Mulligan, H and Ramage, MH (2016) Thermal conductivity of engineered bamboo composites. Journal of Materials Science, 51. pp. 2991-3002. ISSN 0022-2461

Full text not available from this repository.


© 2015, The Author(s). Here we characterise the thermal properties of engineered bamboo panels produced in Canada, China, and Colombia. Specimens are processed from either Moso or Guadua bamboo into multi-layered panels for use as cladding, flooring or walling. We utilise the transient plane source method to measure their thermal properties and confirm a linear relationship between density and thermal conductivity. Furthermore, we predict the thermal conductivity of a three-phase composite material, as these engineered bamboo products can be described, using micromechanical analysis. This provides important insights on density-thermal conductivity relations in bamboo, and for the first time, enables us to determine the fundamental thermal properties of the bamboo cell wall. Moreover, the density-conductivity relations in bamboo and engineered bamboo products are compared to wood and other engineered wood products. We find that bamboo composites present specific characteristics, for example lower conductivities—particularly at high density—than equivalent timber products. These characteristics are potentially of great interest for low-energy building design. This manuscript fills a gap in existing knowledge on the thermal transport properties of engineered bamboo products, which is critical for both material development and building design.

Item Type: Article
Divisions: Div C > Biomechanics
Div A > Energy
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:41
Last Modified: 14 Jun 2018 01:50