CUED Publications database

Control of Y-211 content in bulk YBCO superconductors fabricated by a buffer-aided, top seeded infiltration and growth melt process

Namburi, DK and Shi, Y and Palmer, KG and Dennis, AR and Durrell, JH and Cardwell, DA (2016) Control of Y-211 content in bulk YBCO superconductors fabricated by a buffer-aided, top seeded infiltration and growth melt process. Superconductor Science and Technology, 29. ISSN 0953-2048

Full text not available from this repository.

Abstract

© 2016 IOP Publishing Ltd. Bulk (RE)-Ba-Cu-O ((RE)BCO, where RE stands for rare-earth), single grain superconductors can trap magnetic fields of several tesla at low temperatures and therefore can function potentially as high field magnets. Although top seeded melt growth (TSMG) is an established process for fabricating relatively high quality single grains of (RE)BCO for high field applications, this technique suffers from inherent problems such as sample shrinkage, a large intrinsic porosity and the presence of (RE) 2 BaCuO 5 (RE-211)-free regions in the single grain microstructure. Seeded infiltration and growth (SIG), therefore, has emerged as a practical alternative to TSMG that overcomes many of these problems. Until now, however, the superconducting properties of bulk materials processed by SIG have been inferior to those fabricated using the TSMG technique. In this study, we identify that the inferior properties of SIG processed bulk superconductors are related to the presence of a relatively large Y-211 content (∼41.8%) in the single grain microstructure. Controlling the RE-211 content in SIG bulk samples is particularly challenging because it is difficult to regulate the entry of the liquid phase into the solid RE-211 preform during the infiltration process. In an attempt to solve this issue, we have investigated the effect of careful control of both the infiltration temperature and the quantity of liquid phase powder present in the sample preforms prior to processing. We conclude that careful control of the infiltration temperature is the most promising of these two process variables. Using this knowledge, we have fabricated successfully a YBCO bulk single grain using the SIG process of diameter 25 mm that exhibits a trapped field of 0.69 T at 77 K, which is the largest value reported to date for a sample fabricated by the SIG technique.

Item Type: Article
Subjects: UNSPECIFIED
Divisions: Div C > Materials Engineering
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 18:59
Last Modified: 09 Nov 2017 01:28
DOI: