CUED Publications database

Time and Frequency Localized Pulse Shape for Resolution Enhancement in STFT-BOTDR

Luo, L and Li, B and Yu, Y and Xu, X and Soga, K and Yan, J (2016) Time and Frequency Localized Pulse Shape for Resolution Enhancement in STFT-BOTDR. Journal of Sensors, 2016. ISSN 1687-725X

Full text not available from this repository.


Copyright © 2016 Linqing Luo et al. Short-Time Fourier Transform-Brillouin Optical Time-Domain Reflectometry (STFT-BOTDR) implements STFT over the full frequency spectrum to measure the distributed temperature and strain along the optic fiber, providing new research advances in dynamic distributed sensing. The spatial and frequency resolution of the dynamic sensing are limited by the Signal to Noise Ratio (SNR) and the Time-Frequency (T-F) localization of the input pulse shape. T-F localization is fundamentally important for the communication system, which suppresses interchannel interference (ICI) and intersymbol interference (ISI) to improve the transmission quality in multicarrier modulation (MCM). This paper demonstrates that the T-F localized input pulse shape can enhance the SNR and the spatial and frequency resolution in STFT-BOTDR. Simulation and experiments of T-F localized different pulses shapes are conducted to compare the limitation of the system resolution. The result indicates that rectangular pulse should be selected to optimize the spatial resolution and Lorentzian pulse could be chosen to optimize the frequency resolution, while Gaussian shape pulse can be used in general applications for its balanced performance in both spatial and frequency resolution. Meanwhile, T-F localization is proved to be useful in the pulse shape selection for system resolution optimization.

Item Type: Article
Divisions: Div D > Geotechnical and Environmental
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:40
Last Modified: 27 Oct 2020 05:51
DOI: 10.1155/2016/3204130