CUED Publications database

Investigation of back-off based interpolation between recurrent neural network and n-gram language models

Chen, X and Liu, X and Gales, MJF and Woodland, PC (2016) Investigation of back-off based interpolation between recurrent neural network and n-gram language models. In: UNSPECIFIED pp. 181-186..

Full text not available from this repository.

Abstract

© 2015 IEEE. Recurrent neural network language models (RNNLMs) have become an increasingly popular choice for speech and language processing tasks including automatic speech recognition (ASR). As the generalization patterns of RNNLMs and n-gram LMs are inherently different, RNNLMs are usually combined with n-gram LMs via a fixed weighting based linear interpolation in state-of-the-art ASR systems. However, previous work doesn't fully exploit the difference of modelling power of the RNNLMs and n-gram LMs as n-gram level changes. In order to fully exploit the detailed n-gram level complementary attributes between the two LMs, a back-off based compact representation of n-gram dependent interpolation weights is proposed in this paper. This approach allows weight parameters to be robustly estimated on limited data. Experimental results are reported on the three tasks with varying amounts of training data. Small and consistent improvements in both perplexity and WER were obtained using the proposed interpolation approach over the baseline fixed weighting based linear interpolation.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Subjects: UNSPECIFIED
Divisions: Div F > Machine Intelligence
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:01
Last Modified: 15 Aug 2017 01:26
DOI: