Lloyd, JR and Ghahramani, Z (2015) *Statistical model criticism using kernel two sample tests.* In: UNSPECIFIED pp. 829-837..

## Abstract

We propose an exploratory approach to statistical model criticism using maximum mean discrepancy (MMD) two sample tests. Typical approaches to model criticism require a practitioner to select a statistic by which to measure discrepancies between data and a statistical model. MMD two sample tests are instead constructed as an analytic maximisation over a large space of possible statistics and therefore automatically select the statistic which most shows any discrepancy. We demonstrate on synthetic data that the selected statistic, called the witness function, can be used to identify where a statistical model most misrepresents the data it was trained on. We then apply the procedure to real data where the models being assessed are restricted Boltzmann machines, deep belief networks and Gaussian process regression and demonstrate the ways in which these models fail to capture the properties of the data they are trained on.

Item Type: | Conference or Workshop Item (UNSPECIFIED) |
---|---|

Subjects: | UNSPECIFIED |

Divisions: | Div F > Computational and Biological Learning |

Depositing User: | Cron Job |

Date Deposited: | 17 Jul 2017 19:34 |

Last Modified: | 03 Aug 2017 03:08 |

DOI: |