CUED Publications database

The role of the mobility law of dislocations in the plastic response of shock loaded pure metals

Gurrutxaga-Lerma, B (2016) The role of the mobility law of dislocations in the plastic response of shock loaded pure metals. Modelling and Simulation in Materials Science and Engineering, 24. 065006-065006.

Full text not available from this repository.

Abstract

This article examines the role that the choice of a dislocation mobility law has in the study of plastic relaxation at shock fronts. Five different mobility laws, two of them phenomenological fits to data, and three more based on physical models of dislocation inertia, are tested by employing dynamic discrete dislocation plasticity (D3P) simulations of a shock loaded aluminium thin foil. It is found that inertial laws invariably entail very short acceleration times for dislocations changing their kinematic state. As long as the mobility laws describe the same regime of terminal speeds, all mobility laws predict the same degree of plastic relaxation at the shock front. This is used to show that the main factor affecting plastic relaxation at the shock front is in fact the speed of dislocations.

Item Type: Article
Subjects: UNSPECIFIED
Divisions: Div C > Materials Engineering
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:30
Last Modified: 07 Sep 2017 01:46
DOI: