Palacios-Berraquero, C and Kara, DM and Montblanch, ARP and Barbone, M and Latawiec, P and Yoon, D and Ott, AK and Loncar, M and Ferrari, AC and Atatüre, M (2017) Large-scale quantum-emitter arrays in atomically thin semiconductors. Nature Communications, 8. 15093-.
Full text not available from this repository.Abstract
Quantum light emitters have been observed in atomically thin layers of transition metal dichalcogenides. However, they are found at random locations within the host material and usually in low densities, hindering experiments aiming to investigate this new class of emitters. Here, we create deterministic arrays of hundreds of quantum emitters in tungsten diselenide and tungsten disulphide monolayers, emitting across a range of wavelengths in the visible spectrum (610-680 nm and 740-820 nm), with a greater spectral stability than their randomly occurring counterparts. This is achieved by depositing monolayers onto silica substrates nanopatterned with arrays of 150-nm-diameter pillars ranging from 60 to 190 nm in height. The nanopillars create localized deformations in the material resulting in the quantum confinement of excitons. Our method may enable the placement of emitters in photonic structures such as optical waveguides in a scalable way, where precise and accurate positioning is paramount.
Item Type: | Article |
---|---|
Subjects: | UNSPECIFIED |
Divisions: | Div B > Solid State Electronics and Nanoscale Science |
Depositing User: | Cron Job |
Date Deposited: | 17 Jul 2017 19:26 |
Last Modified: | 15 Apr 2021 05:09 |
DOI: | 10.1038/ncomms15093 |