CUED Publications database

Loss and Bandwidth Studies on Multimode Polymer Waveguide Components for On-Board High-Speed Optical Interconnects

Chen, J and Bamiedakis, N and Vasil'ev, PP and Penty, RV and White, IH Loss and Bandwidth Studies on Multimode Polymer Waveguide Components for On-Board High-Speed Optical Interconnects. (Unpublished)

Full text not available from this repository.

Abstract

Optical interconnects play a key role in the implementation of high-speed short-reach communication links within high-performance electronic systems. Multimode polymer waveguides in particular are strong candidates for use in passive optical backplanes as they can be cost-effectively integrated onto standard PCBs. Various optical backplanes using this technology and featuring a large number of multimode polymer waveguide components have been recently demonstrated. The optimisation of the loss performance of these complex waveguide layouts becomes particularly important at high data rates (>=25 Gb/s) due to the associated stringent power budget requirements. Moreover, launch conditions have to be carefully considered in such systems due to the highly-multimoded nature of this waveguide technology. In this paper therefore, we present thorough loss and bandwidth studies on siloxane-based multimode waveguides and waveguide components (i.e. bends and crossings) that enable the implementation of passive optical backplanes. The performance of these components is experimentally investigated under different launch conditions for different waveguide profiles that can be readily achieved through fabrication. Useful design rules on the use of waveguide bends and crossings are derived for each waveguide type. It is shown that the choice of waveguide parameters depends on the particular waveguide layout, assumed launch conditions and desired link bandwidth. As an application of these studies, the obtained results are employed to optimise the loss performance of a 10-card shuffle router and enable >=40 Gb/s data transmission.

Item Type: Article
Uncontrolled Keywords: cs.ET cs.ET
Subjects: UNSPECIFIED
Divisions: Div B > Photonics
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:18
Last Modified: 27 Jul 2017 05:28
DOI: