CUED Publications database

Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

Huang, Z and Ruiz, HS and Coombs, TA (2017) Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor. Physica C: Superconductivity and its Applications, 534. pp. 73-81. ISSN 0921-4534

Full text not available from this repository.


High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied under the same experimental conditions, what results in about three times larger magnetic pole areas but with an average drop on the peaks of trapped magnetic field of about 50%.

Item Type: Article
Divisions: Div B > Electronics, Power & Energy Conversion
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:11
Last Modified: 16 Apr 2021 20:18
DOI: 10.1016/j.physc.2017.01.004