CUED Publications database

Aluminum-Ion-Intercalation Supercapacitors with Ultrahigh Areal Capacitance and Highly Enhanced Cycling Stability: Power Supply for Flexible Electrochromic Devices.

Li, K and Shao, Y and Liu, S and Zhang, Q and Wang, H and Li, Y and Kaner, RB (2017) Aluminum-Ion-Intercalation Supercapacitors with Ultrahigh Areal Capacitance and Highly Enhanced Cycling Stability: Power Supply for Flexible Electrochromic Devices. Small, 13.

Full text not available from this repository.

Abstract

Electrochemical capacitor systems based on Al ions can offer the possibilities of low cost and high safety, together with a three-electron redox-mechanism-based high capacity, and thus are expected to provide a feasible solution to meet ever-increasing energy demands. Here, highly efficient Al-ion intercalation into W18 O49 nanowires (W18 O49 NWs) with wide lattice spacing and layered single-crystal structure for electrochemical storage is demonstrated. Moreover, a freestanding composite film with a hierarchical porous structure is prepared through vacuum-assisted filtration of a mixed dispersion containing W18 O49 NWs and single-walled carbon nanotubes. The as-prepared composite electrode exhibits extremely high areal capacitances of 1.11-2.92 F cm(-2) and 459 F cm(-3) at 2 mA cm(-2) , enhanced electrochemical stability in the Al(3+) electrolyte, as well as excellent mechanical properties. An Al-ion-based, flexible, asymmetric electrochemical capacitor is assembled that displays a high volumetric energy density of 19.0 mWh cm(-3) at a high power density of 295 mW cm(-3) . Finally, the Al-ion-based asymmetric supercapacitor is used as the power source for poly(3-hexylthiophene)-based electrochromic devices, demonstrating their promising capability in flexible electronic devices.

Item Type: Article
Uncontrolled Keywords: Al-ion intercalation device integration electrochemical capacitor interpenetrating nanowire networks ultrahigh areal capacitance
Subjects: UNSPECIFIED
Divisions: Div B > Solid State Electronics and Nanoscale Science
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:26
Last Modified: 10 Aug 2017 01:38
DOI: