CUED Publications database

Structural Simplicity as a Restraint on the Structure of Amorphous Silicon

Cliffe, MJ and Bartók, AP and Kerber, RN and Grey, CP and Csanyi, G and Goodwin, AL (2017) Structural Simplicity as a Restraint on the Structure of Amorphous Silicon. Physical Review B - Condensed Matter and Materials Physics, 95.

Full text not available from this repository.


Understanding the structural origins of the properties of amorphous materials remains one of the most important challenges in structural science. In this study we demonstrate that local ‘structural simplicity’, embodied by the degree to which atomic environments within a material are similar to each other, is powerful concept for rationalising the structure of canonical amorphous material amorphous silicon (a-Si). We show, by restraining a reverse Monte Carlo refinement against pair distribution function (PDF) data to be simpler, that the simplest model consistent with the PDF is a continuous random network (CRN). A further effect of producing a simple model of a-Si is the generation of a (pseudo)gap in the electronic density of states, suggesting that structural ho- mogeneity drives electronic homogeneity. That this method produces models of a-Si that approach the state-of-the-art without the need for chemically specific restraints (beyond the assumption of homogeneity) suggests that simplicity-based refinement approaches may allow experiment-driven structural modelling techniques to be developed for the wide variety of amorphous semiconductors with strong local order.

Item Type: Article
Divisions: Div C > Applied Mechanics
Depositing User: Cron Job
Date Deposited: 17 Jul 2017 19:55
Last Modified: 02 Mar 2021 06:54
DOI: 10.1103/PhysRevB.95.224108