CUED Publications database

Impulse transfer during sand impact with a solid block

Holloman, RL and Deshpande, V and Wadley, HNG (2015) Impulse transfer during sand impact with a solid block. International Journal of Impact Engineering, 76. pp. 98-117. ISSN 0734-743X

Full text not available from this repository.


© 2014 Elsevier Ltd. All rights reserved. A vertical pendulum apparatus has been used to experimentally investigate the impulse and pressure applied by the impact of wet synthetic sand upon the flat surface of a back supported solid aluminum test block. The transferred impulse and maximum pressure applied to the sample were both found to decrease with increasing standoff distance between the bottom of the sand layer and the impact face of the solid block. A particle based simulation method was used to model the sand's acceleration by the explosive and its impact with the test structure. This method was found to successfully predict both the impulse and pressure transferred during the tests. Analysis of the experimentally validated simulations indicates that the momentum transmitted to the test structure is approximately equal to the free field momentum of the incoming sand, consistent with the idea that the sand stagnates against a planar surface upon impact. The decrease in transferred impulse with increasing standoff distance arises from a small reduction in sand particle velocity due to momentum transfer to air particles, and an increase in lateral spreading of the sand particles as the standoff distance increased. This spreading results in a smaller fraction of the sand particles impacting the (finite) area of the test sample impact face.

Item Type: Article
Divisions: Div C > Materials Engineering
Depositing User: Cron Job
Date Deposited: 01 Aug 2017 02:17
Last Modified: 15 Sep 2020 05:30
DOI: 10.1016/j.ijimpeng.2014.09.010