CUED Publications database

Compound poisson approximation via information functionals

Barbour, AD and Johnson, O and Kontoyiannis, I and Madiman, M (2010) Compound poisson approximation via information functionals. Electronic Journal of Probability, 15. pp. 1344-1368.

Full text not available from this repository.


An information-theoretic development is given for the problem of compound Poisson approximation, which parallels earlier treatments for Gaussian and Poisson approximation. Nonasymptotic bounds are derived for the distance between the distribution of a sum of independent integervalued random variables and an appropriately chosen compound Poisson law. In the case where all summands have the same conditional distribution given that they are non-zero, a bound on the relative entropy distance between their sum and the compound Poisson distribution is derived, based on the data-processing property of relative entropy and earlier Poisson approximation results. When the summands have arbitrary distributions, corresponding bounds are derived in terms of the total variation distance. The main technical ingredient is the introduction of two “information functionals,” and the analysis of their properties. These information functionals play a role analogous to that of the classical Fisher information in normal approximation. Detailed comparisons are made between the resulting inequalities and related bounds. © 2010 Applied Probability Trust.

Item Type: Article
Divisions: Div F > Signal Processing and Communications
Depositing User: Cron Job
Date Deposited: 08 Jan 2018 20:11
Last Modified: 15 Apr 2021 05:27
DOI: 10.1214/EJP.v15-799