CUED Publications database

Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum

Barrera, O and Bombac, D and Chen, Y and Daff, TD and Galindo-Nava, E and Gong, P and Haley, D and Horton, R and Katzarov, I and Kermode, JR and Liverani, C and Stopher, M and Sweeney, F (2017) Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum. Journal of Materials Science, 53. pp. 6251-6290. ISSN 0022-2461

Full text not available from this repository.

Abstract

Hydrogen embrittlement is a complex phenomenon, involving several length- and timescales, that affects a large class of metals. It can significantly reduce the ductility and load-bearing capacity and cause cracking and catastrophic brittle failures at stresses below the yield stress of susceptible materials. Despite a large research effort in attempting to understand the mechanisms of failure and in developing potential mitigating solutions, hydrogen embrittlement mechanisms are still not completely understood. There are controversial opinions in the literature regarding the underlying mechanisms and related experimental evidence supporting each of these theories. The aim of this paper is to provide a detailed review up to the current state of the art on the effect of hydrogen on the degradation of metals, with a particular focus on steels. Here, we describe the effect of hydrogen in steels from the atomistic to the continuum scale by reporting theoretical evidence supported by quantum calculation and modern experimental characterisation methods, macroscopic effects that influence the mechanical properties of steels and established damaging mechanisms for the embrittlement of steels. Furthermore, we give an insight into current approaches and new mitigation strategies used to design new steels resistant to hydrogen embrittlement.

Item Type: Article
Subjects: UNSPECIFIED
Divisions: Div A > Energy
Depositing User: Cron Job
Date Deposited: 16 Jun 2018 20:12
Last Modified: 13 Apr 2021 09:38
DOI: 10.1007/s10853-017-1978-5